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Shear flow effects on phase separation of entangled polymer blends

N. Clarke and T. C. B. McLeish
Department of Physics and Astronomy & Interdisciplinary Research Centre in Polymer Science and Technology, University of

Leeds LS2 9JT, United Kingdom
~Received 1 December 1997!

We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified
Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an ap-
proach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and
plateau moduli of the two components.@S1063-651X~98!51404-3#

PACS number~s!: 83.80.Es, 64.75.1g, 83.10.Nn
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Although the effects of shear flow on polymeric syste
have been studied experimentally@1,2# and theoretically, a
consistent overall picture has yet to emerge. It is belie
that hydrodynamic effects in simple binary liquids@3# lead to
shear-induced mixing, whereas viscoelasticity in polymer
lutions may lead to shear-induced phase separation@4,5#. Doi
and Onuki @6# established a useful theoretical framewo
from which to study entangled polymer blends under sh
flow. However, they did not explore the important differen
between a solution and a blend. In an entangled poly
solution it is reasonable to assume that all of the stres
carried by the polymer chain, and that, for well entang
polymers@7#, the stress relaxes with a single characteris
time t. In an entangled blend each component has its o
characteristic relaxation time and plateau modulus. Re
ence@6# included only a single relaxation time.

A number of unusual effects on polymer blend miscib
ity, not observed in polymer solutions, such as flow-induc
demixing at low shear rates, but demixing at higher sh
rates, were reported in Ref.@1#. It was also noted that the
greater the difference in viscosity between the blend com
nents, the larger the effect of shear on the miscibility of
system. Finally, there was evidence of miscibility gaps
temperatures lower than the quiescent spinodal curve.
understanding of such phenomena is the motivation beh
this work.

Physically, we may anticipate that unusual behavior
shear flow should be associated uniquely with polym
blends. It is known that, in a blend of long and short po
mers, long polymers relax more quickly in the presence
short polymers than in a monodisperse melt, and that s
polymers also relax more quickly in the presence of ot
short polymers than in a blend. This has been modele
polydisperse homogeneous blends by ‘‘double reptatio
@8#, as described below. In this Rapid Communication,
show that, for heterogeneous blends, coupled effects in s
relaxation result in an effective dynamic competition b
tween the components, both of which prefer to be in
presence of short polymers in order to reduce stress in
presence of shear flow.

The two key assumptions of Ref.@6# are that there exists
a ‘‘tube velocity,’’ which arises from the difference in diffu
sion coefficients between the two components~an idea origi-
nally introduced by Brochard@9#!, and that the stress arisin
from the shear flow enters the dynamic equations at the s
level as the chemical potential. In other words, stress gr
571063-651X/98/57~4!/3731~4!/$15.00
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ents become an extra driving force for the dynamics of c
centration fluctuations. The force balance equations for
two components are written as@6#

z~vW A2vW B!1fA¹W mA1fA¹W p2
zA

zA1zB
¹W •s= ~n!50W,

~1!

z~vW B2vW A!1fB¹W mB1fB¹W p2
zB

zA1zB
¹W •s= ~n!50W ,

wherevW i is the velocity of componenti ; z i5f i(Ni /Nei)z0 is
the corresponding frictional drag, whereNi and Nei are the
degree of polymerization of a chain and an entanglem
segment, respectively;f i is its volume fraction;z0 is the
monomeric friction coefficient, which for simplicity we sha
assume to be equal for both species;z5zAzB /(zA1zB). The
first term of Eq.~1! represents the drag force between t
two components.m i is the chemical potential, so that th
second term represents the force due to the osmotic pres
p is the isotropic pressure that ensures incompressibility;
s (n) is the network stress due to the shear flow effects. If
eliminate the pressure from Eq.~1!, then

z~vW A2vW B!5fAfB@2¹W ~mA2mB!1a¹W •s= ~n!#, ~2!

where

a5@~zA /fA!2~zB /fB!#/~zA1zB!.

By inserting Eq.~2! into the continuity equation

]fA/]t 52¹W •~vW AfA!,

the key result of Ref.@6# is obtained:

]fA

]t
52¹W •~vW fA!1¹W ~fA

2fB
2/z!@¹W ~mA2mB!2a¹W •s= ~n!#,

~3!

wherevW 5fAvW A1fBvW B is the volume average velocity.
It is now obvious that before proceeding, we must co

sider the form that the network stress should take. Fo
polymer solution or melt, the network stress is minima
modeled by the Maxwell model@10#

s= ~n!~ t !5E
2`

t ]G~ t2t8!

]t8
C= 21~ t,t8!dt8, ~4!
R3731 © 1998 The American Physical Society
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where s= (n) is only determined to within an isotropic con
stant,G(t2t8) is the stress relaxation function, andC= 21 is
the Finger tensor, which for simple shear flow takes the fo

C= 21~ t,t8!5S 11ġ2~ t2t8!2 ġ~ t2t8! 0

ġ~ t2t8! 1 0

0 0 1
D . ~5!

In Eq. ~5!, and for the remainder of this Rapid Communic
tion, we use the usual directional conventions for flow (x),
shear gradient (y), and vorticity (z). In order to elucidate the
features of shear flow, which are of the greatest interest w
considering the coupling of stress to concentration fluct
tions, we assume that for a single polymeric component,
sufficient to consider the stress relaxation as dominated
single time scalet, so that,

G~ t2t8!5G0exp$2~ t2t8!/t%,

whereG0 is the plateau modulus. In the steady state, Eq.~4!
gives rise to the following expressions for the shear str
and first normal stress difference:

sxy5G0ġt, N15sxx2syy5G0~ ġt!2. ~6!

For polymer blends it is essential to understand how
rheological behavior of a mixture is related to the compon
rheology. It is well established@11,12# that a simple linear
mixing rule, which results from the reptation model in i
original form @7#, is inappropriate for describing the rheo
logical behavior of polydisperse systems. A more realis
mixing rule, known as double reptation@8#, was derived by
extending the reptation concept to allow for the simultane
relaxation of network constraints on a given chain by rep
tion of its neighbors. This is the simplest way to treat co
straint release in polymer blends@13#. By generalizing
double reptation to blends, and again assuming single e
nential stress relaxation for each component, we have

G~ t2t8!5„fA$GAexp@2~ t2t8!/tA#%1/2

1fB$GBexp@2~ t2t8!/tB#%1/2
…

2. ~7!

Such a mixing rule is highly successful in predicting stre
relaxation in polymer blends@14#. The key features capture
by this theory are that the relaxation behavior of the t
components is coupled, with the degree of coupling be
dependent on the relative concentrations of the two com
nents, and that the dependence of the various stresses o
component volume fractions is given explicitly. We expe
the validity of Eq.~7! to extend into the weakly nonlinea
flow regime whereN1 is important, because the stress rela
ation is still controlled by reptation, rather than by nonline
processes such as retraction@7#, for which cooperative mo-
tion becomes more subtle@15#. Use of Eq. ~7! gives the
steady-state stresses as
-
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sxy5ġFfA
2GAtA14fAfB~GAGB!1/2S tAtB

tA1tB
D1fB

2GBtBG ,
N15sxx2syy52ġ2FfA

2GAtA
218fAfB~GAGB!1/2

3S tAtB

tA1tB
D 2

1fB
2GBtB

2 G . ~8!

Since we can only determine the stress to within an isotro
constant, we may rewrite the diagonal components of
stress tensor in terms of the first normal force,

sxx52N1/3, syy52N1 /3, szz52N1 /3,

so that Trs= 50.
Now we Fourier transform and linearize Eq.~3!, using the

adiabatic approximation@5#, in which it is assumed that the
stress relaxes instantaneously to a value consistent with
magnitude of the concentration fluctuation; in other wor
we neglect the equation of motion for the stress. This i
good approximation for most experimental systems@1,2#,
which possess such a separation of time scales. It shoul
noted that, while we have assumed small concentration fl
tuations and, hence, small stress fluctuations, we have
placed any restriction on the magnitude of the stress.
result is

]dfA

]t
52ġqx

]dfA

]qy
1M Fq2~xc2x1kq2!

2
a

kBT (
i , j

qiqj

]

]fA
s i j

~n!GdfA , ~9!

where M5fA
2fB

2kBT/z is the mobility. We have used th
usual expression for the chemical-potential difference
terms ofx, the Flory-Huggins interaction parameter,xc , its
value on the quiescent spinodal, andk, the interfacial energy.
We may define an effective diffusion coefficientDeff by

]dfA/]t 52Deffq
2dfA . ~10!

The addition of stress gradients to the driving force for t
dynamics of concentration fluctuations leads to a modifi
diffusion coefficient. Since the phase boundary is given
Deff→0, in the limit of q→0, we have the possibility of
shear-induced shifts in the phase boundary. However, c
centration fluctuations in theqx direction, even those that in
quiescent conditions would grow after a jump into the tw
phase region, will be convected to largerq and eventually
decay. Consequently, shifts in the phase boundary can
be defined in theqx50 plane. If we consider the contributio
to the stress gradient arising from the first normal stress
ference, then significant effects on the static ‘‘equilibrium
properties arise. The main result of Eq.~9! for polymer so-
lutions @4,5# is that shear-induces phase separation in theqy
direction and suppresses it in theqz direction.

Here we focus on the consequences for polymer blen
First, we consider theqy direction for whichqx5qz50. We
need an expression for the variation of the velocity~or shear!
field in theqy direction. If we eliminate the relative veloci
ties from Eq.~1!, then
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fA¹W mA1fB¹W mB1¹W p2¹W •s= ~n!50W , ~11!

from which we find

¹W 3¹W s= ~n!50W , ~12!

the result of which is that the shear stresssxy is constant in
the velocity gradient direction, and as a consequence@4#,

]ġ

]fA
U

sxy

52S ]sxy

]fA
D

ġ
Y S ]sxy

]ġ D
fA

. ~13!

We now assume that the steady-state stress is give
Eq. ~8!. By substituting Eq.~13! into Eq. ~9!, and defining
G85GB /GA andt85tB /tA , we have

D~qW y![2M @xc2x1kqy
21Dxc~qW y!#,

52M ~xc2x1kqy
2!1

4

3
M

a

kBT

3ġ2GAtA
2FfA14~122fA!G81/2S t8

11t8D
2

2~12fA!G8t8222$fA
218fA~12fA!

3G81/2S t8

11t8D
2

1~12fA!2G8t82}

3H fA12~122fA!G81/2S t8

11t8D2~12fA!G8t8

fA
214fA~12fA!G81/2S t8

11t8D1~12fA!2G8t8
J G
~14!

which definesDxc(qW y), theġ-dependent shift in the spinoda
in the qy direction. The convective term is absent due to
condition onqx . Although the shift in the spinodal is give
by a somewhat cumbersome term, there are some impo
general comments that can be made. It should be noted
whenNA.NB we havea.0; to ensure positivity we assume
without loss of generality, that componentA has the greate
relaxation time, i.e.,tA.tB .

An examination of Eq.~14! reveals that the shift in the
spinodal (Dxc) can be either positive or negative, dependi
on the relative values ofGA , GB , tA , and tB . In other
words, it is possible to suppress phase separation in thqy
direction by the mechanism of shear, a phenomenon th
not predicted for polymer solutions. In Fig. 1 we show t
curve corresponding to zero shift in the spinodal for a ran
of G8 and t8,0. The complex behavior forG8,1 is par-
ticularly remarkable. The range offA for which phase sepa
ration is suppressed is reduced asG8 decreases from unity
whereas, forG8.1, the corresponding range is increased
G8 increases from unity. In the limit ofG8→0, the predic-
tions of Refs.@4,5# are recovered with a quadratic depe
dence of the shear modulus on concentration, and a re
ation time that is independent of concentration.
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The difference betweenqx5qy50 and theqx5qz50 di-
rection is that no shear rate perturbation is required@5# to
satisfy Eq.~12!; ġ is constant. Hence, in theqz direction, the
shift in the spinodal is given by

Dxc~qW z!5
2a

3kBT
ġ2GAtA

2FfA14~122fA!G81/2S t8

11t8D
2

2~12fA!G8t8G . ~15!

In the case ofG8<1, we see from Eq.~15! that the spinodal
in the qz direction will always be suppressed, independen
of t8, even though the spinodal in theqy direction may be
enhanced or suppressed. ForG8.1 it is possible to induce
phase separation for a range oft8. This is illustrated in the
inset of Fig. 1. For polymer solutions, i.e.,G8→0, the spin-
odal becomes suppressed in this direction, as predicted
Milner @5#.

The rich behavior described above is entirely due to
coupling of the stress relaxation of the two components. T
underlying physics, which gives rise to Eqs.~14! and~15!, is
that each component can relax stress more effectively w
surrounded by polymers with the faster relaxation tim
and/or the lower plateau modulus. This gives rise to an
fective competition between the two components, the re
of which depends sensitively upon the relative relaxat
times and the relative plateau moduli. These factors, co
bined with the variation of the normal force with concentr
tion and the constraints imposed by the force balance@Eqs.
~11! and ~12!#, all determine whether the shift in the pha
boundary is positive or negative.

It is well established that polymers exhibit shear thinni
flow behavior at relatively small shear rates, due to the lo
relaxation times of many polymers, and we expect sh
thinning to have a strong effect on the demixing behavior.
order to extend the above work to this regime of strong flo
a constitutive equation is required. Doi and Edwards w

FIG. 1. Contour plots of zero shift in the spinodal for fluctuations in t
qy direction for a range ofG8 as a function oft8 andfA . In the region to
the right of each curve, shear-induced demixing (Dxc,0) occurs, and to the
left, shear-induced mixing (Dxc.0) occurs. –––,G850.1; ---, G850.5;
••• G850.9; ——,G851.0; ---,G852.0; -–-,G8510.0. Inset: same as main
figure, but for fluctuations in theqz direction. In the region above eac
curve, shear-induced demixing (Dxc,0! occurs, and below, shear-induce
mixing (Dxc.0! occurs. –––,G852.0; ---, G855.0; ...,G8510.0.
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the first to derive such an equation based on the tube m
@7#. The physical picture of their model is that after defo
mation a polymer retracts quickly,within its tube, to its equi-
librium length, followed by slow orientational relaxation
Such behavior leads to the prediction of shear thinning, w
a shear viscosity and first normal stress, which both decre
for ġt>1. An important feature of the model is that the stre
relaxation function is identical to that used before; hence,
strain-dependent nonlinearities can be factored, in agreem
with experiments on polymer melts and solutions@7#. Con-
sequently, we can apply@18# the mixing rule of des
Cloiseaux to the shear thinning regime. Again, there is
dependence of the relaxation times and plateau moduli on
volume fraction within this approximation. Before procee
ing, it is important to note that a significant problem, whi
is the subject of considerable ongoing research@15,16# with
this model, is that, above a critical shear rate, the shear s
decreases with shear rate, which is physically unrealis
Hence, we shall restrict our attention to the values ofġt for
which ]sxy /]ġ.0. This regime is nonetheless interestin
since shear thinning still occurs.

FIG. 2. A map of the regions of shear-induced mixing (Dxc.0) and
shear-induced demixing (Dxc,0! as a function of shear rate, in theqy

direction, for a range oft8. In all cases,G851.0. The diagram illustrates the
change in the miscibility behavior as shear thinning becomes importan
log10(ġtA),20.5. For values ofġtA greater than the stability limit, the
constitutive equation produces physically unrealistic solutions.
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By using a differential approximation@17# to the Doi-
Edwards model, we find that the behavior of the shift in t
spinodal, in theqy direction, is altered from that of weakly
nonlinear flow. In Fig. 2 we illustrate the regions of positiv
and negative shifts in the spinodal in theqy direction; asġ is
increased and shear thinning becomes important, the m
bility behavior changes. Without shear thinning the effect
increasing the shear rate is to increase the magnitude o
shift in the phase boundary; however, if shear thinning
fects are included, the sign of the shift can also change.
t850.01 and t850.1, the behavior, for a range offA ,
changes from shear-induced demixing to shear-induced m
ing. Such qualitative behavior has been seen in experim
in polystyrene-polyvinylmethylether blends@2#. However,
for t850.3 andt850.7, shear-induced demixing becomes
vorable as shear thinning of both components occurs. S
complex behavior arises from the variation of the norm
force with the relative concentration of each component;
underlying physical reasons will be explored further in R
@18#.

In summary, we have shown that a simple mixing rule
stress relaxation, coupled with a phenomenological equa
of motion for concentration fluctuations in the presence
shear flow, leads to rich, but quantifiable, changes in
phase diagrams of polymer blends, which are qualitativ
different from that of polymer solutions. Our results ma
help to explain some of the phenomena reported in R
@1,2#, particularly with regard to the shear rate dependenc
the shift of the phase boundary when shear thinning effe
are considered, and the strong dependence on the visc
difference between components. In the form presented in
paper, the theory is not, on its own, capable of explain
disconnected miscibility gaps@1#. However, we remark tha
a temperature dependence oft8, comparable to that ofx,
could account in a simple way for apparently disconnec
regions of immiscibility. Such temperature sensitivity wou
arise naturally from a difference in the glass transition te
perature of the two components. In a future publication,
will explore this possibility and other important cons
quences of the theory. We look forward to a series of ca
fully designed experiments with which to test the theory.
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